

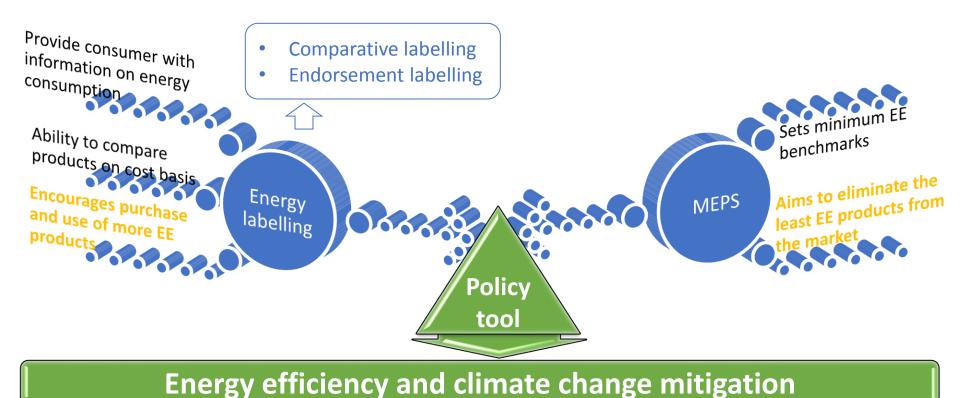
Department: Energy **REPUBLIC OF SOUTH AFRICA**

REVIEW OF SOUTH AFRICA'S APPLIANCE ENERGY CLASSES AND IDENTIFICATION OF THE NEXT SET OF ELECTRICAL EQUIPMENT FOR INCLUSION IN THE NATIONAL STANDARDS AND LABELLING PROJECT: NEW ELECTRICAL APPLIANCES

Industry Stakeholder Workshop: Computers

3 April 2019

Agenda


- 1. Policy tools considered
- 2. Scope of work and boundaries
- 3. Screening process
- 4. Methodology
- 5. International MEPS trends
- 6. SA analysis
- 7. Recommendations
- 8. Open discussion

1. Policy tools considered

UBAN-ECON Development Economists

Energy labelling and MEPS

Policy options to improve energy efficiency

- Two main policy options considered are energy labelling and Minimum Energy Performance Standards (MEPS)
- These are typically enacted through government legislation and regulations
- When is labelling most effective?
 - When consumers purchase products and pay the energy bills
 - When products are on display at purchase and can be compared
 - Where there is a wide range of energy efficiency on the market
- Labelling creates market pull to encourage suppliers to offer more efficient products to the market

Policy options to improve energy efficiency

- When is MEPS most effective?
 - When product purchasers do not pay energy bills (can be different parts of a company, landlord and tenant)
 - When products are not on display for sale (purchased on specifications or from catalogues)
 - When there is a significant range of efficiency available (internationally) but this is not always present on the local market
- MEPS is a *market push* to ensure that all products offered for sale meet a minimum efficiency level

2. Scope of work and boundaries

Study objectives (as per TOR)

- 1. To <u>identify a new set of electrical equipment (residential or</u> <u>commercial)</u> to which compulsory minimum energy efficiency MEPS and/or labelling could be introduced
- 2. To <u>recommend timelines for implementation</u> of improved and new minimum energy performance levels for the next set of electrical equipment
- 3. To <u>conduct an impact assessment analysis</u> of the proposed mandatory requirements for each appliance on <u>consumers</u>, <u>retailers</u>, <u>South African manufacturers</u>, <u>and importers</u>
- To <u>quantify the potential energy and greenhouse gas</u> <u>emission savings</u> that could be achieved through new MEPS and/or labelling over a 10 and 30-year period

Project Scope (UNDP and DOE)

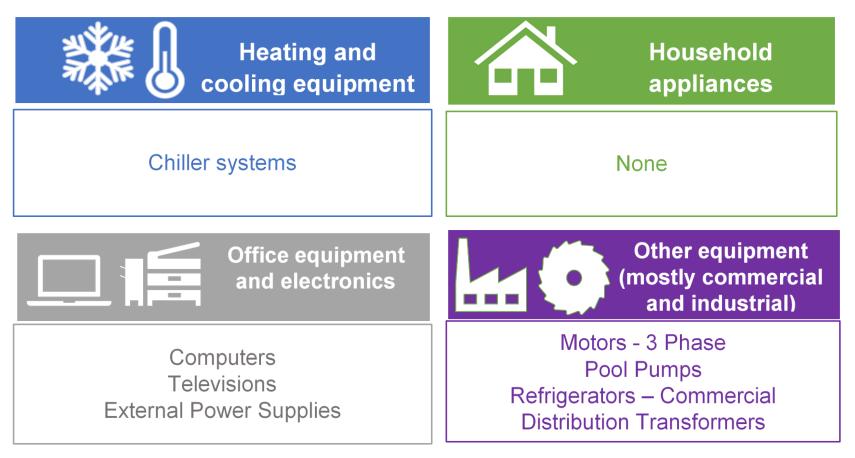
1. Purpose:

 Identify new electrical appliances that could be considered for a Standards & Labelling Programme

2. Key considerations:

- 4-10 products (residential and commercial)
- Must include distribution transformers
- Main goal reduce electricity usage and GHG emissions
- 3. Approach:

3. Screening


UBAN-ECON

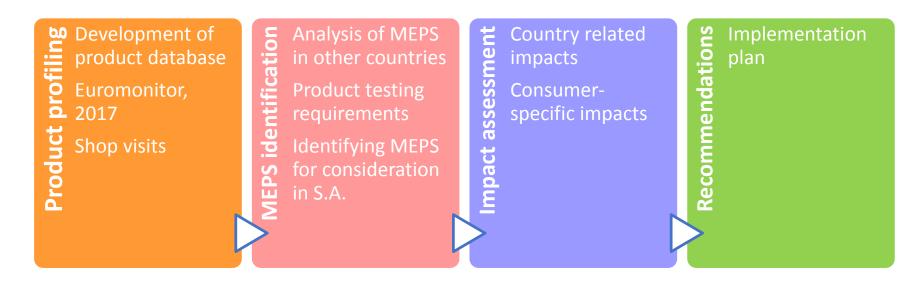
Screening process

All lights, appliances	 List all lights and appliances products MEPS and labelling in 75 countries 	96
0. Scope	 Boundaries - Remove products out of scope Products covered by MEPS in SA already Remove any non-electric products 	72
1. MEPS elsewhere	 Globally regulated products At least two countries/economic blocks EU MEPS/Ecodesign counted as one 	24
2. Energy Savings	 Likley future energy savings from new MEPS Efficiency range, sales, usage levels and power Relative significant future potential energy savings 	
3. Ease of adoption	 Check for adoption, implementation and operation issues Relevant test procedures in place, ideally SAN (or IEC, ISO) MVE issues, especially any verification issues 	9
4. Other barriers	 SA appropriate - technical or other barriers Technologies, increased purchase costs, rate of market change, local manufacturing impacts 	
Colobrato Do	valenment Diversity	LE

URBAN-ECON

Shortlisted electric equipment

Note: Large ACs (>7.1kW) to be covered in a separate study



4. Methodology

UBAN-ECON Development Economists

Methodology

- 1. Data sources:
 - In-house developed database of electric appliances (web crawling, brochures, etc.)
 - o Euromonitor, 2017
 - Shop visits
- 2. Approach:

Data sources

- International sales databases
 - Euromonitor, 2017
 - EU Energy Star Certified
 Computer Database
- International MEPS programs covered – Europe and Australia
- Field data collection
 - Online shops
 - Shop visits

In-house product database:

- 17 laptop brands and 8 desktop brands
- 700 laptop computer models
- 129 desktop models
- Contact details, prices, model description, battery and specifications, processor and memory specifications, display size, etc.

Brand type	Types of De	sktop PCs su	pplied	Battery & Power specifications						
	Aspire Z1 Intel Celero (Model AZ1-612)	on J3060								
Acer Aspire Z1	* also in this series (I	Model AZ1-60)2)	- Power supply 45 W	 - 1.6 GHz; Dual-core - 19.5" display 					
	Aspire Z3 Intel Core i (Model AZ3-715)	3-6100T								
Acer Aspire Z3	* also available Intel	Core i3-4160)T, i3-7100T	- Power supply 90 W	- 3.2 GHz; Dual-core - 23.8" display					
	Aspire Z3 Intel Core i3-5005U (Model AZ3-705)			- Power supply 90 W	- 2 GHz; Dual-core - 21.5" display					
Acer Aspire ZC	Aspire ZC Intel Pentiu (Model AZC-700)	ım N3700		- Power supply 65 W	- 1.6 GHz; Quad-core - 19.5" display					
Acer Aspire S 24	Aspire S24 Intel Core (Model S24-880)	i5/i7 proces	sors	n/a	- IPS technology					
Acel Asplie 3 24	Veriton Z Intel Core i	7-4765T		iya	- 2 GHz; Quad-core					
Supplier	Supplier type	ntact details		Source						
Acer SA	Manufacturer	0861 223772	https://www.ace	r.com/ac/en/ZA/content/home						
Hewlett & Packard (HP)	Manufacturer	011 069 5400	400 http://www8.hp.com/za/en/products/laptops/index.html#!view=grid&page=1							
		011 709								
Dell SA	Manufacturer	7707	7707 http://www.dell.com/p/laptops-ec.aspx?c=za&l=en&s=dhs&~ck=mn							
Asus SA	Manufacturer		https://www.asus.com/za/Laptops/							
Lenovo SA	Manufacturer			novo.com/za/en/laptops/c/Laptops						
Packard Bell	Manufacturer		http://www.pack	ardbell.com/pb/en/ZA/content/home						

5. International MEPS trends

URBAN-ECON

International Review of MEPS for computers

- Energy Star used widely around the world (endorsement label)
- MEPS in limited countries: Australia, New Zealand, Europe, Japan (not US)
- Australia and NZ use Energy Star V5.0 (ES5)
- Europe uses the same approach as ES5 but with tighter levels
- Approach provides a power allowance for each product type and for features provided
- A few other countries have MEPS but very parochial approaches – not recommended

Computer categories

l	Category	Description
	А	All desktop computers and integrated computers that do not meet the definition of Category B, Category C or Category D below shall be classified as Category A
	В	 Desktop computers and integrated computers with: a) two physical processor cores; and b) greater than or equal to two gigabytes (GB) of system memory.
	C	Desktop computers and integrated computers that have greater than two physical processor cores and are configured with a minimum of one of the following two characteristics: a) greater than or equal to two gigabytes (GB) of system memory b) a discrete GPU.
	D	 Desktop computers and integrated computers that have greater than or equal to four physical processor cores and are configured with a minimum of one of the following two characteristics: a) greater than or equal to four gigabytes (GB) of system memory b) a minimum of a category G3 GPU.
	D High End	 Computer with not less than four processor cores and with: a) A discrete GPU ≥ G5 with a data width (frame buffer) ≥ 192 bits. b) System memory ≥6GB, at least two channels of memory. c) ≥ two PCIe slot single-ended points of °-8 or °-16 configuration. d) A power supply unit ≥ 500 W nameplate output rating.

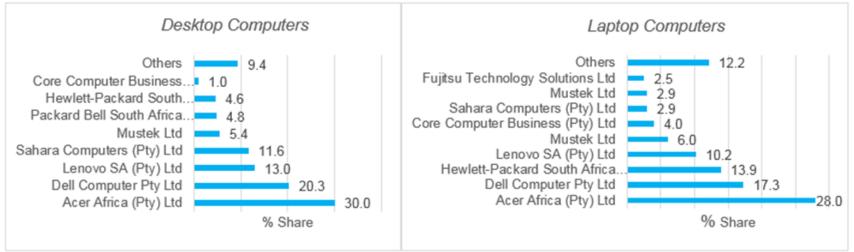
6. SA analysis

UBAN-ECON Development Economists

Product Overview

- Many different shapes and sizes
- **Defining scope** needs to be done carefully
 - Growing demand for alternatives (tablets and smart phones (lower energy))
 - Desktops declining in home use, laptops common
- Key features of laptops:
 - **Battery life**: ranges from 3.5 hours to 27 hours
 - Wattage (Adapter): ranges from 24W to 330W (i.e. 24W, 30W, 33W, 45W, 65W, 90W, 120W, 130W, 135W, 150W, 180W, 200W, 230W, 240W, 250W, 330W)
 - Voltage: 100 240V
 - Frequency: 50/60Hz
 - Energy efficiency certification: Some of Energy Star certified.
- Very rapid changes in technology over past 3 decades likely to continue

Market overview – demand and usage in SA


- Very common:
 - Home: variable
 - Businesses: 40-45 h
- 2.5 m units retailed in 2017 (Euromonitor, 2017)
- By 2022, 2.9 million (Euromonitor, 2017)
- Projected to grow @ CAGR of 3.8%

URBAN-ECON

Market Overview – supply in SA

• 15 laptop and 18 desktop brands available

Source: Euromonitor, 2017

- Energy star rated computer appliances available
- No locally manufactured units identified
- Average prices:

Computer type	Average unit price in 2017
Desktop Computers	R3 850
Laptop Computers	R10 579
Tablet Computers	R3 742

Impact Analysis – Assumptions

- Total desktop and laptop sales (business plus retail) of 1.7 million and 1.4 million units respectively in 2017 (Euromonitor, 2017)
- Average product life of 6 years
- Market share by category: as per in-house product database
- The 8 categories modelled reflect the 8 categories mirrored in Australian and European regulations for computers
- The assumed usage and time by mode is drawn from Australian and European sources
- The idle power BAU is derived from Energy star V5.0, and the idle power MEPS is derived from Energy star

Impact Analysis – Assumptions

O otomorry	Market share	Sector split		Assumed time by mode			Idle power		Hours of operation	
Category		Res	Non- res	Off mode	Sleep mode	ldle mode	BAU	MEPS	Res (hrs/yr)	Non-res (hrs/yr)
Desktop Category A	0%	0.2	0.8	55%	5%	40%	30.5W	23.3W	1752	3504
Desktop Category B	21%	0.2	0.8	55%	5%	40%	36.1W	27.6W	1752	3504
Desktop Category C	0%	0.2	0.8	55%	5%	40%	52.6W	40.2W	1752	3504
Desktop Category D	23%	0.1	0.9	55%	5%	40%	67.8W	51.9W	1752	3504
Desktop Category D High End	11%	0.05	0.95	55%	5%	40%	77.1W	59.0W	1752	3504
Laptop Category A	0%	0.4	0.6	60%	10%	30%	11.0W	8.4W	1314	2628
Laptop Category B	0%	0.4	0.6	60%	10%	30%	17.9W	13.7W	1314	2628
Laptop Category C	45%	0.4	0.6	60%	10%	30%	34.4W	26.3W	1314	2628

Impact Analysis – Energy Savings

$$E_{TEC} = \left(\frac{8760}{1000}\right) * \left(P_{off} * T_{off} + P_{sleep} * T_{sleep} + P_{idle} * T_{idle}\right)$$

• Individual savings:

Cotogony	kWh/	GPU add	Assumed time by mode			ldle Hours				Annual energy
Category	y (ES V5.0)	kWh/y	Off	Sleep	Idle	per year	ES V5.0	BAU	MEPS EU	savings (kWh)
Desktop Cat A	148	0	55%	5%	40%	3504	125.8	106.9	81.8	25
Desktop Cat B	175	0	55%	5%	40%	3504	148.8	126.4	96.7	30
Desktop Cat C	209	46	55%	5%	40%	3504	216.8	184.2	140.9	43
Desktop Cat D	234	95	55%	5%	40%	3504	279.7	237.7	181.8	56
Desktop Cat D _{HE}	234	140	55%	5%	40%	3504	317.9	270.2	206.7	64
Laptop Cat A	40	0	60%	10%	30%	2628	34	28.9	22.1	7
Laptop Cat B	53	12	60%	10%	30%	2628	55.3	47	35.9	11
Laptop Cat C	88	37	60%	10%	30%	2628	106.3	90.3	69.1	21

• Total annual MEPS savings - 110.7 GWh

7. Recommendations

Recommendations for Computers

- Tier 1 European MEPS level (10% below Energy Star V5.0) in 2020
- Tier 2 European MEPS level (35% below Energy Star V5.0) in 2022
- This is a 5 year lag on the European timetable
- Need other regions to set benchmarks for new MEPS (more stringent levels or different approaches) in the future

7. Discussion and questions?

UBAN-ECON

Thank you

Elena Broughton E-mail: <u>elena@urban-econ.com</u> Tel: +27 12 342 8687 Website: <u>www.urban-econ.com</u>

